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Abstract
In this paper, we give similarity solutions of partial differential equations
of fractional order with a moving boundary condition. The solutions are
given in terms of a generalized Wright function. The time-fractional Caputo
derivative and two types of space-fractional derivatives are considered. The
scale-invariant variable and the form of the solution of the moving boundary
are obtained by the Lie group analysis. A comparison between the solutions
corresponding to two types of fractional derivative is also given.

PACS numbers: 02.30.Jr, 02.60.Lj, 02.50.−r

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fractional calculus [1, 2] is very important in describing the evolution of complex systems
for the reason that most of the processes associated with complex systems have dynamics
involving long memory in time and non-local in space and the fractional derivatives do have
some of those characteristics. For example, the Caputo, the Riemann–Liouville and the Reisz
fractional derivatives are widely used in the description of viscoelastic materials [3, 4, 5] and
anomalous diffusions [6–8]. A survey paper on the application of fractional derivatives in
modern mechanics is given by Xu and Tan [9].

In this paper, we will consider the application of the fractional diffusion equation (FDE)
in the release of a solute from a polymer matrix in which the initial loading is higher than the
solubility. It is a typical moving boundary problem from the point of view of mathematics.
Though different types of anomalous diffusion equation with appropriate initial and boundary
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conditions have been considered [8, 10, 11], due to the high nonlinearity of moving boundary
problems and the fact that many of the useful properties of an ordinary derivative are not known
to carry over analogously for the case of a fractional derivative operator, fractional calculus
has scarcely been applied to such problems. Liu and Xu [13] first introduced a time-fractional
diffusion equation with a moving boundary condition to a drug release process. They used
the time FDE as the master equation and gave an exact solution. Li and Xu et al [14] used the
spacetime FDE to describe the process of a solute release from a polymer matrix in which the
initial solute loading is higher than the solubility and gave the exact solution in terms of
the Fox-H function.

In order to describe the process of a solute release from a polymer matrix, we use the
models analogous to those discussed in [12–14]. In this paper, the fractional diffusion equation

C
0 Dα

T c(X, T ) = D0D
β

Xc(X, T ) (1)

is used to describe the mass transport of the dissolved solute in the polymer matrix, where
C
0 Dα

T is the Caputo derivative, 0D
β

X is the space derivative and D is the diffusive coefficient. In
[12, 13], the space derivative used is the classical second-order partial derivative. In [14], the
space-fractional derivative is generalized to the Riesz derivative. However, from the point of
view of Lé vy flights, the Riesz derivative would be inaccurate to model the diffusive process
in a finite domain [7, 15]. To skip this problem, Benson et al [16], Liu et al [17], del-Castillo-
Negrete [18] used the Riemann–Liouville derivative as the space-fractional derivative operator
in researching the solute transport. Zhang et al [19] obtained the result that the Riemann–
Liouville operator is problematic and could result in unphysical results for the solute transport
in bounded domains. They used the Caputo derivative as the space-fractional derivative. In this
paper, we will consider the space-fractional operator both in the Riemann–Liouville definition
and Caputo one. In the following, we will use C

0 D
β

X and RL
0 D

β

X to denote the Caputo derivative
and the Riemann–Liouville derivative, respectively. The boundary and initial conditions are
given by

c(0, T ) = 0, (2)

c(s(T ), T ) = Cs, (3)

(C0 − Cs)
C
0 Dα

T s(T ) = D0D
β−1
X c(X, T )|X=s(T ), (4)

s(0) = 0, (5)

where C0 and Cs are the initial concentration of the solute distributed in the matrix and the
solubility of the solute in the solvent, respectively, (2) is the perfect sink condition, (3) is the
concentration of the solute at the diffusion front, s(T ) is the position of the diffusion front
which moves inward as time progresses, (4) is the generalized mass conservation condition
and (5) is the initial condition of s(T ).

By denoting R the scale of the polymer matrix and using reduced dimensionless variables
defined as

x = X

R
, t =

(
D

Rβ

) 1
α

T , C = c

Cs

, S(t) = s

R
,

we can get the governing equation and the boundary and initial conditions in non-dimensional
form:

C
0 Dα

t C(x, t) = 0D
β
x C(x, t), (0 � x � S(t), 0 < α � 1 < β � 2) (6)

C(0, t) = 0, (7)

2
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C(S(t), t) = 1, (8)

ηC
0 Dα

t S(t) = 0D
β−1
x C(x, t)|x=S(t), (9)

S(0) = 0, (10)

where η = C0−Cs

C5
is a constant larger than 0.

According to the results of previous works [20], we can see that very few solutions to
moving boundary problems in a closed form can be obtained. They are mainly taking the form
of the single variable and are known as the similarity solution or scale-invariant solution. In
this paper, by the aid of the Lie group method [21–23], we determined the similarity variable
z, and the equations satisfied by the similarity solutions. Two sets of solutions are presented
and the proof is given.

2. The equation for the scale-invariant solution

Using the definitions concerning the Lie group method listed in Luchko and Gorenflo [21],
we have the following theorem.

Theorem 1. The similarity transformations under which equations (6)–(10) are invariant are
given by the expressions

z = xt−α/β, C(x, t) = f (z) and S(t) = ptα/β, (11)

where p is a constant to be determined.

Proof. By Setting

x̄ = λax, t̄ = λbt, C̄ = λcC, S̄ = λdS, (12)

and after some simple calculations, the following results can be obtained:

C
0 Dα

t C(x, t) = λbα−cC
0 Dα

t̄ C̄(x̄, t̄ ). (13)

RL
0 Dβ

x C(x, t) = λ−c+aβRL
0 D

β
x̄ C̄(x̄, t̄ ). (14)

C
0 Dβ

x C(x, t) = λ−c+aβC
0 D

β
x̄ C̄(x̄, t̄ ). (15)

Consequently, the boundary conditions (7)–(10) are changed to λcC̄(0, λ−bt̄) = 0,

λcC̄(λ−d s̄, λ−bt̄) = 1, and ηλ−d+bαC
0 Dα

t̄ S̄ = λ−c+(β−1)a
0D

β−1
x̄ C̄(s̄, t̄ )|λ−a x̄=λ−d S̄ , respectively.

These relations imply that, in order to keep the invariants of scaling transformations, these
following relations must hold,

bα − c = aβ − c, c = 0, c + (β − 1)a = −d + bα, a = d. (16)

From relation (16), we can obtain a
b

= α
β

. Considering the Lie group method, the similarity

variable z can be obtained. Noting that C̄(s̄, t̄ ) = 1, i.e. λcC(λds, λbt) = 1, letting λb = t−1,
we have C(s(t)t

− α
β , 1) = 1. This implies that s(t) ∼ t

α
β , i.e. s(t) = pt

α
β . �

Theorem 2. The Caputo derivative C
0 Dα

t , (0 < α � 1) of the function C(x, t) = f (z), z =
xt−α/β is given by the relation

C
0 Dα

t f (z) = t−α∗P
0,1−α
β/α f (z) = t−αK

0,1−α
β/α

(
−α

β

d

dz
f (z)

)
, (17)

3
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where ∗P
0,1−α
β/α is the Caputo-type modification of the Erdélyi–Kober fractional differential

operator and

K
τ,α
δ g(y) = δ

�(α)
yδτ

∫ ∞

y

(uδ − yδ)α−1u−δ(τ+α−1)g(u) du, α > 0. (18)

Proof. This theorem is just a particular case γ = 0 and a modification with respect to β of the
results from [23]. However, for the readers and our convenience, we give a short proof. By
using the new variable u = x/sα/β , we have

C
0 Dα

t f (z) = 1

�(1 − α)

∫ t

0
(t − s)−α

∂f
(

x
sα/β

)
∂s

ds

= 1

�(1 − α)

∫ z

∞

(
t −

(x

u

) β

α

)−α
df (u)

du
du

= t−α

�(1 − α)

∫ z

∞
(u

β

α − z
β

α )−αuβ df (u)

du
du. (19)

Equation (19) is exactly the expression of the Caputo-type modification of the Erdélyi–Kober
fractional derivative operator defined by (17) and (18). �

Remark 1. In order to make the process of the proof easier in the following sections, we give
a different form of relation (17) here,

∗P
0,1−α
β/α f (z) = t−α

�(1 − α)

∫ 1

0
(1 − s)−α

∂f
(
zs

− α
β

)
∂s

ds. (20)

This relation can be got using variable s = (
z
u

) β

α in (19).

Using the above relations, we have:

Theorem 3. The reduced form of equation (6) is given by

∗P
0,1−α
β/α f (z) = 0D

β
z f (z), (21)

and the conditions become

f (0) = 0, f (p) = 1, ηp
�

(
1 + α

β

)
�

(
1 + α

β
− α

) = 0D
β−1
z f (z)|z=p. (22)

In theorem 3, 0D
β
z and 0D

β−1
z are the space-fractional operators which can be the Caputo or

Riemann–Liouville derivatives distinguished by the marks C and RL.

3. Similarity solutions to the equations

The similarity solutions of equation (6) in some cases have been given, such as the
time-fractional derivative in Riemann–Liouville sense [22], the time- and space-fractional
derivatives both in Riemann–Liouville sense [21], the time-fractional derivative in Caputo
sense [23]. In this paper, we considered two cases which have not been researched. They are:
case 1, the time- and space-fractional derivatives both in Caputo sense; case 2, the time- and
space-fractional derivatives in Caputo and Riemann–Liouville senses respectively.

Theorem 4. As for the case 1, the similarity solution of equation (21) is

f (z) = C1zW(−α,1− α
β
)(β,2)(z

β), (23)

4
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where W(µ,a)(ν,b)(z) is the generalized Wright function defined by

W(µ,a)(ν,b)(z) =
∞∑

k=0

zk

�(a + µk)�(b + νk)
, µ, ν ∈ R, a, b ∈ C. (24)

In the following analysis, the constraint −1 < µ < 0, ν > 0 is used.

Proof. The convergence of solution (23) was given in [21]. Two important properties of the
Caputo derivative ([2][chapter 2, property 2.16, p 95]) needed in the proof are

C
0 Dν

z z
µ = �(1 + µ)

�(1 + µ − ν)
zµ−ν, µ > 1 + [ν], (25)

and

C
0 Dν

z z
n = 0, n ∈ N, n < ν. (26)

We first apply the operator C
0 D

β
z to the solution term by term and use the above two properties

(25) and (26),

C
0 Dβ

z {C1zW(−α,1− α
β
)(β,2)(z

β)} = C
0 Dβ

z

{
C1

z

�
(
1 − α

β

) + C1

∞∑
k=1

zβk+1

�
(
1 − α

β
− αk

)
�(2 + βk)

}

= C1

∞∑
k=1

zβk+1−β

�
(
1 − α

β
− αk

)
�(2 + βk − β)

= C1zW(−α,1− α
β
−α)(β,2)(z

β). (27)

Considering the definition of series representation of the generalized Wright function, ∂f (zs
− α

β )

∂s

can be obtained in the series form,

∂f
(
zs

− α
β

)
∂s

= ∂

∂s

[
C1

∞∑
k=0

zβk+1s
− α

β
(βk+1)

�
(
1 − α

β
− αk

)
�(2 + βk)

]

= C1zs
− α

β
−1

∞∑
k=0

zβks−αk

�
(− α

β
− αk

)
�(2 + βk)

. (28)

However, we cannot apply the integral
∫ 1

0 (1 − s)−α ds term by term to the power series (28)
because of the divergence of the corresponding integrals. In Luchko and Gorenflo’s paper
[21], the integral representation of the generalized Wright function was used when the Erdélyi–
Kober operator was applied to it and the Fox-H function was also used as an intermediate step
to prove the convergence of the integral. In our proof, the representation of the Caputo-type
modification of the Erdélyi–Kober operator (20) is considered and the Fox-H function is used
just as did in [21]. According to the definition of the Fox-H function [24], series (36) can be
written as

∞∑
k=0

zβks−αk

�
(− α

β
− αk

)
�(2 + βk)

= H
1,1
2,2

[
−zβs−α

∣∣∣(0,1)(− α
β
,α)

(0,1)(−1,β)

]

= 1

2π i

∫
L

�(−ς)�(1 + ς)

�(2 + βς)�
(− α

β
− ας

) (−zβs−α)ς dς, (29)

where L is a contour separating the poles of �(−ς) and �(1 + ς), i.e. {0, 1, 2, . . .} and
{−1,−2, . . .}. Here we choose L as a line from a − i∞ to a + i∞, provided that the condition

5
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−1 < a < − 1
β

holds. Then we have

∗P
0,1−α
β/α f (z) = C1z

�(1 − α)

∫ 1

0
(1 − s)−αs

− α
β
−1

· 1

2π i

∫
L

�(−ς)�(1 + ς)

�(2 + βς)�
(− α

β
− ας

) (−zβs−α)ς dς ds. (30)

Noting that Re(−ας − α
β
) > 0 and the definition of the beta function

B(a, b) =
∫ 1

0
(1 − t)a−1tb−1 dt = �(a)�(b)

�(a + b)
, Re(a), Re(b) > 0, (31)

we can change the order of integration. As a result, (30) becomes,

C1z

2π i

∫
L

�(−ς)�(1 + ς)

�(2 + βς)�
(− α

β
− ας

) (−zβ)ς
1

�(1 − α)

∫ 1

0
(1 − s)−αs

−ας− α
β
−1 ds dς

= C1z

2π i

∫
L

�(−ς)�(1 + ς)

�(2 + βς)�
(
1 − α − α

β
− ας

) (−zβ)ς dς

= C1zH
1,1
2,2

[
−zβ

∣∣∣(0,1)(1−α− α
β
,α)

(0,1)(−1,β)

]
. (32)

Taking the expansion for the Fox-H function [24],

Hm,n
p,q (z) =

m∑
h=1

∞∑
k=0

∏m
j=1,j �=h �

(
bj − Bj

bh+k

Bh

) ∏n
j=1 �

(
1 − aj + Aj

bh+k

Bh

)
∏q

j=m+1 �
(
1 − bj + Bj

bh+k

Bh

) ∏p

j=n+1 �
(
aj − Aj

bh+k

Bh

) (−1)kz(bh+k)/Bh

k!Bh

,

(32) can be written as:

C1zH
1,1
2,2

[
−zβ

∣∣∣(0,1)(1−α− α
β
,α)

(0,1)(−1,β)

]
= C1z

∞∑
k=0

�(1 + k)

�(2 + βk)�(1 − α − α
β

− αk)

(−1)k(−zβ)k

k!

= C1zW(−α,1− α
β
−α)(β,2)(z

β). (33)

Comparing (33) with (27), we can get the result. �

Remark 2. Both in this paper and the previous paper [21–23], detail descriptions of how
to get the similarity solution of equation (21) were not given. Actually, there is no efficient
method to solve this problem universally as yet. However, there are still two methods that may
be considered. The first one is the Mellin transform method used by Wyss [25]. This method
needs solving a differential equation which is a difficult job. The second one is to search the
solution in series form

∑∞
k=0 akz

bk . By considering the boundary and initial conditions and
property of the fractional derivatives (26), we can first consider the analytical continuation of
the beta function for the entire complex plane [1] in order to get the value of ak and bk , and
then verify the convergence and the validity of the series. In this paper, we choose the second
method for simplicity.

By analogy with theorem 4, we have

Theorem 5. As for the case 2, the similarity solution of equation (21) is given by

f (z) = C2z
β−1W(−α,1+ α

β
−α)(β,β)(z

β). (34)

Proof. Apply the operator RL
0 D

β
z to solution (34) term by term, we have

RL
0 Dβ

z {C2z
β−1W(−α,1+ α

β
−α)(β,β)(z

β)} = C2z
β−1W(−α,1+ α

β
−2α)(β,β)(z

β). (35)

6
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Considering the definition of series representation of the generalized Wright function,
∂f

(
zs

− α
β

)
∂s

can be obtained in the series form,

∂f (zs
− α

β )

∂s
= ∂

∂s

[
C2

∞∑
k=0

zβk+β−1s
− α

β
(βk+β−1)

�
(
1 + α

β
− α − αk

)
�(β + βk)

]

= C2z
β−1s

−α+ α
β
−1

∞∑
k=0

zβks−αk

�
(

α
β

− α − αk
)
�(β + βk)

= C2z
β−1s

−α+ α
β
−1

H
1,1
2,2

[
−zβs−α

∣∣∣(0,1)( α
β
−α,α)

(0,1)(1−β,β)

]

= C2z
β−1s

−α+ α
β
−1

2π i

∫
L

�(−ς)�(1 + ς)

�(β + βς)�
(

α
β

− α − ας
) (−zβs−α)ς dς, (36)

where L is a contour separating the poles of �(−ς) and �(1 + ς), i.e. {0, 1, 2, . . .} and
{−1,−2, . . .}. Here we choose L as a line from b − i∞ to b + i∞, provided that the condition
−1 < b < 1

β
− 1 holds. Then we have

∗P
0,1−α
β/α f (z) = C2z

β−1

�(1 − α)

∫ 1

0
(1 − s)−αs

α
β
−α−1

· 1

2π i

∫
L

�(−ς)�(1 + ς)

�(β + βς)�
(

α
β

− α − ας
) (−zβs−α)ς dς ds. (37)

Noting that Re(−ας + α
β

− α) > 0 and the definition of the beta function we can change the
order of integration. As a result, (37) becomes

C2z
β−1

2π i

∫
L

�(−ς)�(1 + ς)

�(β + βς)�
(

α
β

− α − ας
) (−zβ)ς · 1

�(1 − α)

∫ 1

0
(1 − s)−αs

−ας+ α
β
−α−1 ds dς

= C2z
β−1

2π i

∫
L

�(−ς)�(1 + ς)

�(β + βς)�(1 − 2α + α
β

− ας)
(−zβ)ςdς

= C2z
β−1H

1,1
2,2

[
−zβ

∣∣∣(0,1)(1−2α+ α
β
,α)

(0,1)(1−β,β)

]
= C2z

β−1W(−α,1+ α
β
−2α)(β,β)(z

β). (38)

Comparing (38) with (35), we can get the result. �

Remark 3. In the process of obtaining theorem 5, the property of the Riemann–Liouville
derivative ([2][chapter 2, property 2.1, p 71])

RL
0 Dν

z z
ν−j = 0, j = 1, 2, . . . , [ν] + 1, (39)

is used.

Combining (23) and (34) with the boundary conditions (22), we can get the equations
satisfied by the constants C1, C2 and p.

Theorem 6. As for the case 1, we have

ηp2
�

(
1 + α

β

)
�

(
1 + α

β
− α

)W(−α,1− α
β
)(β,2)(p

β) = p2−βW(−α,1− α
β
)(β,3−β)(p

β) (40)

and

C1 = 1

pW(−α,1− α
β
)(β,2)(pβ)

. (41)

7
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0.75

0.8
(d )

β

p

sub–diffusion
process

η=3

Figure 1. p versus β when the space-fractional derivative is the Caputo one. The bigger p, the
faster the diffusion process.

Using the computer, the value of C1 and p can be obtained. Correspondingly, as for the case
2, we have

ηpβ
�

(
1 + α

β

)
�

(
1 + α

β
− α

)W(−α,1+ α
β
−α)(β,β)(p

β) = W(−α,1+ α
β
−α)(β,1)(p

β) (42)

and

C2 = 1

pβ−1W(−α,1+ α
β
−α)(β,β)(pβ)

. (43)

4. Discussion of the solutions and conclusions

In this paper, we considered a model of a solute release from a polymer matrix in which the
initial loading is higher than the solubility [12–14] and the solutions in terms of the generalized
Wright function is obtained.

In the case of α = 1, β = 2 the governing equation degenerate to the ordinary diffusion
equation, and the model reduced to the one by Paul and McSpadden [12]. Using the formula
of Gamma function, �

(
1
2 − n

) = (−1)n2n
√

π

(2n−1)!! , we have zW(−α,1− α
β
)(β,2)(z

β) = erf
(

z
2

)
, which is

coincident with the result in [12].
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Figure 2. p versus β when the space-fractional derivative is the Riemann–Liouville one. The
bigger p, the faster the diffusion process.

Table 1. Values of p in different cases.

η = 1.5 η = 3.5 η = 7 η = 10

(α, β) Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

(0.75, 1.75) 1.0210 0.9350 0.6430 0.5840 0.4370 0.3950 0.3570 0.3230
(0.5, 1.75) 1.0110 0.9300 0.6130 0.5580 0.4100 0.3710 0.3340 0.3020
(1, 2) 1.0520 1.0520 0.7240 0.7240 0.5230 0.5230 0.4410 0.4410
(1, 1.75) 1.0690 0.9660 0.6860 0.6180 0.4700 0.4140 0.3860 0.3480
(1, 1.5) 1.0250 0.8790 0.6000 0.5130 0.3830 0.3270 0.3030 0.2590

p is an important parameter for describing the character of the model for its value shows
the velocity of the change of the moving boundary which implies the velocity of the diffusive
process. The values of p in different cases are listed in table 1. Making a comparison
between the values of p corresponding to two types of fractional operators, we can see that
the diffusion process described by the Caputo derivative is much faster than the one by the
Riemann–Liouville derivative.

However, not all the space-fractional derivatives can describe super-diffusion (or faster
than ordinary diffusion) process. In order to show the influence of the order of the space-
fractional derivative, we set α = 1. The values of p versus different β in some cases are shown
in figures 1 and 2. From the two figures, we can see that, for small η, e.g. η = 0.5 (figures 1(a)
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and 2(a)), p is bigger in the case β < 2 than the case β = 2. This means that the Caputo
and Riemann–Liouville derivatives both describe the super-diffusion process. In this case,
the bigger η, the smaller p, i.e. the slower the diffusion process. This property is coincident
with the one described by the Riesz derivative. For larger η, for example, η = 3 (figures 1(d)
and 2(d)), both the two derivatives cannot describe the super-diffusion process, while at some
cases (figures 1(c) and 2(b)), the two operators can conditionally describe the super-diffusion
process.

The spatial fractional diffusion equations are mainly used to describe the super-diffusion
processes. However, with a brief analysis of the solutions, we demonstrated that the Caputo
and Riemann–Liouville fractional derivatives cannot always do the business. Therefore, when
using these two derivatives in describing the anomalous diffusions, the initial loading must be
considered.
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